翻訳と辞書
Words near each other
・ Landvarnarflokkurinn
・ Landvetter
・ Landvetter IS
・ LandView
・ Landvik
・ Landville, West Virginia
・ Landvættir
・ Landwade
・ Landward
・ Landward House
・ LandWarNet
・ Landwasser (Mandau)
・ Landwasser (river)
・ Landwasser Viaduct
・ Landwasserschlepper
Landweber exact functor theorem
・ Landweber iteration
・ Landwehr
・ Landwehr (disambiguation)
・ Landwehr Canal
・ Landwehr Corps
・ Landwehr station
・ Landwehr, Lower Saxony
・ Landwer coffee
・ Landwijk Castle
・ Landwind
・ Landwind X6
・ Landwind X7
・ Landwirtschaftliche Produktionsgenossenschaft
・ Landwirtschaftliche Rentenbank


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Landweber exact functor theorem : ウィキペディア英語版
Landweber exact functor theorem
In mathematics, the Landweber exact functor theorem, named after Peter Landweber, is a theorem in algebraic topology. It is known that a complex orientation of a homology theory leads to a formal group law. The Landweber exact functor theorem (or LEFT for short) can be seen as a method to reverse this process: it constructs a homology theory out of a formal group law.
==Statement==
The coefficient ring of complex cobordism is MU_
*(
*) = MU_
* \cong \mathbb(), where the degree of x_i is 2i. This is isomorphic to the graded Lazard ring \mathcalR_
*. Define for a topological space ''X''
:E_
*(X) = MU_
*(X)\otimes_R_
*
Here \mathcalR_
* is flat over \mathcalMU_
*-module and the sequence (p,v_1,v_2,\dots, v_n) is regular for ''M'', for every ''p'' and ''n''. Then
::E_
*(X) = MU_
*(X)\otimes_M_
*
:is a homology theory on CW-complexes.
In particular, every formal group law F over a ring R yields a module over \mathcal{}MU_
* since we get via F a ring morphism MU_
*\to R.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Landweber exact functor theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.